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Abstract

N6-methyladenosine (m6A) is a reversible and abundant internal modification of messenger RNA 

(mRNA) and long noncoding RNA (lncRNA) with roles in RNA processing, transport, and 

stability. Although m6A does not preclude Watson-Crick base pairing, the N6-methyl group alters 

the stability of RNA secondary structure. Since changes in RNA structure can affect diverse 

cellular processes, the influence of m6A on mRNA and lncRNA structure has the potential to be 

an important mechanism for m6A function in the cell. Indeed, an m6A site in the lncRNA 

metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was recently shown to induce 

a local change in structure that increases the accessibility of a U5-tract for recognition and binding 

by heterogeneous nuclear ribonucleoprotein C (HNRNPC). This m6A-dependent regulation of 

protein binding through a change in RNA structure, termed ‘m6A-switch,’ affects transcriptome-

wide mRNA abundance and alternative splicing. To further characterize this first example of an 

m6A-switch in a cellular RNA, we used nuclear magnetic resonance (NMR) and Förster resonance 

energy transfer (FRET) to demonstrate the effect of m6A on a 32-nucleotide RNA hairpin derived 

from the m6A-switch in MALAT1. The observed imino proton NMR resonances and FRET 

efficiencies suggest that m6A selectively destabilizes the portion of the hairpin-stem where the U5-

tract is located, increasing the solvent accessibility of the neighboring bases while maintaining the 

overall hairpin structure. The m6A-modified hairpin has a predisposed conformation that 

resembles the hairpin conformation in the RNA–HNRNPC complex more closely than the 
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unmodified hairpin. The m6A-induced structural changes in the MALAT1 hairpin can serve as a 

model for a large family of m6A-switches that mediate the influence of m6A on cellular processes.
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Introduction

RNA modifications are important modulators of the structure and function of cellular RNAs. 

While the numerous modifications found in transfer RNA (tRNA) and ribosomal RNA 

(rRNA) have been extensively studied, much less is known about the function of the 

comparatively sparse modifications found in mRNA and lncRNA. Three types of internal 

mRNA and lncRNA modifications have been identified in higher eukaryotes so far [1–6]. Of 

these, N6-methyladenosine (m6A) is the most abundant, with more than 12,000 m6A sites in 

over 7,000 genes in the human transcriptome [2–4,7]. A reversible modification, m6A 

occurs within RRm6ACH motifs (R=A/G, H=A/C/U), with a high density of m6A sites near 

stop codons and in long internal exons [3,4]. The m6A methyltransferase complex is 

composed of the proteins methyltransferase-like 3 (METTL3), METTL14, and Wilms tumor 

1 associated protein (WTAP) [8,9]. Two known demethylases, fat mass and obesity 

associated protein (FTO) and AlkB family member 5 (ALKBH5), are responsible for 

removing m6A modifications [10,11]. Perturbations to these enzymes lead to altered m6A 

levels and affect diverse processes including metabolism, spermatogenesis, the circadian 

clock, and stem cell differentiation [10–15].

m6A modification has functional roles in RNA splicing, nuclear export, and decay [16–19]. 

One mechanism for these functions is the recognition of m6A by reader proteins. Several 

m6A readers identified to date contain a YT521-B homology (YTH) domain that specifically 

binds m6A in an aromatic cage [20–22]. Recently, the nuclear protein heterogeneous 

ribonucleoprotein C (HNRNPC) was identified as an m6A reader that lacks a YTH domain. 

Instead, the recognition of m6A by HNRNPC depends on an m6A-induced change in RNA 

structure [19]. While m6A is capable of Watson-Crick base pairing, thermal denaturation 

studies with model RNA duplexes have demonstrated that m6A in a duplex is destabilizing 

by 0.5–1.7 kcal/mol [23,24]. To allow hydrogen bonding at the Watson-Crick face, the N6-

methyl is rotated such that it is in the anti position relative to the N1 across the C6–N6 bond 
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[23]. The destabilization of the duplex by m6A methylation is likely due to the steric clash 

between N7 and the anti N6-methyl in base-paired m6A [23]. Since HNRNPC binds single-

stranded U-tract motifs, methylation of an adenosine in a hairpin-stem can destabilize the 

duplex to expose an HNRNPC binding site [25,26]. This ‘m6A-switch’ mechanism was 

found to be the basis by which HNRNPC recognizes m6A modification at a site in the 

human lncRNA MALAT1. Further examination of HNRNPC-bound RNAs revealed 2,798 

high-confidence m6A-switches in which HNRNPC is thought to use a similar mechanism of 

indirect m6A recognition [19]. Likewise, other mRNA/lncRNA binding proteins could 

recognize m6A indirectly via m6A-induced changes in the availability of their structured or 

single-stranded binding sites. m6A-switch-like RNAs could thus represent a widespread 

mechanism of m6A function in the cell.

Dynamic RNA structures have extensive roles in the function of structural and regulatory 

lncRNAs, and in the regulation of mRNA transcription, splicing, translation, and stability 

[27]. Thus, the effect of m6A on lncRNA and mRNA structure has the potential to influence 

many cellular processes. In vitro studies with model m6A duplexes have demonstrated that 

m6A can either stabilize or destabilize RNA secondary structures depending on its position 

within or at the end of a duplex [23]. Further evidence suggests that m6A influences RNA 

structure in vivo. Parallel analysis of RNA structure (PARS) showed that RRACH motifs 

containing m6A have a different RNA structural profile than RRACH motifs lacking m6A 

modification [23]. Moreover, structural probing in an in vivo click selective 2’-hydroxyl 

acylation and profiling experiment (icSHAPE) revealed a METTL3-dependent enhancement 

in reactivity at m6A sites [28]. The widespread influence of m6A on RNA secondary 

structure in cells could potentially have important consequences for the processing, function, 

and fate of mRNAs and lncRNAs.

The discovery that an m6A-switch regulates HNRNPC binding revealed that m6A-induced 

changes in mRNA and lncRNA structure have functional effects in vivo. In this study, we 

further characterized the m6A-induced structural changes in a 32-nucleotide hairpin derived 

from the m6A-switch in the human lncRNA MALAT1. Nuclear magnetic resonance (NMR) 

revealed that while the methylated hairpin maintains its overall structure, m6A affects the 

distances between protons in the hairpin region where m6A is located. Förster resonance 

energy transfer (FRET) studies further demonstrated that m6A alters the conformation of the 

MALAT1 hairpin to become more similar to the HNRNPC-bound hairpin, whereas 

HNRNPC binding induces similar conformations of both the methylated and unmethylated 

hairpins. Comparing A and m6A hairpins shows that m6A modification predisposes the 

RNA conformation to resemble more closely its conformation in the RNA–HNRNPC 

complex.

Results

In previous studies, HNRNPC was found to preferentially bind an m6A-modified hairpin 

composed of nucleotides 2556–2587 of the lncRNA MALAT1, with an ~8-fold higher 

affinity for the methylated hairpin [19]. Since HNRNPC is known to recognize single-

stranded U-tracts of at least 5 U’s in length, it was hypothesized that methylation of A2577 

destabilizes the hairpin-stem, exposing the single-stranded U-tract for HNRNPC binding 
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(Figure 1) [19,25,26]. Structural probing with RNase V1 and S1 nuclease was consistent 

with this m6A-switch model, showing decreased stacking and increased single-strandedness 

in the region of the hairpin-stem surrounding A2577 upon m6A modification [19,29]. 

However, it was not known how extensive the global structural and dynamic differences are 

between the unmodified and m6A-modified hairpins, and how m6A modification enhances 

HNRNPC binding to the MALAT1 hairpin. We address these questions here using NMR 

and FRET methods.

NMR shows that methylation of the MALAT1 hairpin changes the conformation of a portion 
of the hairpin stem

To examine the differences between the methylated and unmethylated MALAT1 hairpin in 

solution, we collected 1D 1H NMR spectra of both hairpins at 20 °C in 10% D2O (Figures 

2a–c). Native gel electrophoresis demonstrated that the hairpins migrate as a single major 

species with the same mobility regardless of methylation status (Figure 2b). The 1D spectra 

of the two hairpins are largely similar, suggesting that the overall structure of the hairpin is 

maintained. In particular, the 9.5–14.8 ppm regions show that the chemical shifts of the 

imino protons H1 and H3 of G and U, respectively, are largely unaffected by methylation of 

the hairpin (Figure 2c).

We performed 2D nuclear Overhauser effect spectroscopy (NOESY) experiments of the 

methylated and unmethylated MALAT1 hairpins at 4 °C and 20 °C in 10% D2O to assign 

the imino protons and to detect differences in inter-proton distances (Figure 3a–b and Table 

1). Sequential NOEs between imino protons of neighboring guanosines and uridines were 

used for imino proton assignments. Many of the same imino–imino NOEs were present in 

both methylated and unmethylated hairpins, suggesting that these base–base interactions are 

maintained and the overall structure of the hairpin does not change upon m6A modification. 

However, two imino–imino NOEs were observed at 20 °C in the unmethylated hairpin, but 

not in the methylated hairpin: an NOE between the imino protons of U11 and G21, and an 

NOE between the imino protons of G9 and U10. Both NOEs involve bases within the U-

tract that consists of the binding site for HNRNPC protein. The loss of these NOEs suggests 

a change in conformation in the upper part of the MALAT1 hairpin-stem. Since NOEs are 

an indicator of through-space distance, where NOE signal falls rapidly with distance r as 

1/r6, the loss of the NOE between U11 and G21 imino protons in particular is consistent 

with the model that this portion of the stem is less stably base paired in the methylated 

hairpin.

In addition, the methylated hairpin exhibited several changes in the amino–imino region of 

the NOESY spectrum (Figure 3c). The most pronounced changes were found in NOEs 

between amino region protons and the imino proton of U10. These amino region resonances 

likely correspond to protons from the A/m6A22 that base pairs with U10. Similar to 

previous NMR studies with model m6A duplexes, we observed NOEs of the m6A22 H2 and 

H6 with the imino proton of the base-paired U10 [23]. Two NOEs were observed between 

the m6A22 H6 and the imino proton of U10, suggesting slow exchange between the anti and 

syn conformations of the N6 methyl group. The NOEs of the U10 imino proton with the 

m6A22 H6 proton were stronger than those with the A22 H6a and H6b protons of the 
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unmethylated hairpin, likely due to slower rotation of the N6 methylamino group, as has 

been previously proposed [23]. The NOE between the U10 imino and the A/m6A22 H2 was 

equally intense in the methylated and unmethylated hairpins, suggesting that the hydrogen 

bond between the U10 imino proton and m6A22 N1 is retained. Given that the single m6A22 

H6 proton shows two NOEs with the U10 imino proton, the m6A-U base pair could be either 

singly or doubly hydrogen bonded within the hairpin depending on the syn or anti 

conformation of the N6 methyl group in m6A. Previous studies with model m6A duplexes 

found only one NOE between the m6A H6 and the U imino [23]. This discrepancy is 

consistent with previous observations that the effect of m6A on stability is strongly context 

dependent [23,24]. The m6A-U was two G-C pairs from the end of the model m6A duplex 

used for NMR studies by Roost et al. [23], whereas in the MALAT1 hairpin the m6A-U is 

two G-U pairs from the loop, which could afford more flexibility for the N6-methylamino 

group to rotate.

We further collected 2D NOESY spectra of the methylated and unmethylated MALAT1 

hairpins at 20 °C in 100% D2O (Figure 3d). The resonances were broad and overlapping, 

such that the intra- and inter-nucleotide H6/H8–H1′ NOEs along the duplex could not be 

traced unambiguously. Nonetheless, a comparison between the NOESY spectra of the 

methylated and unmethylated hairpins showed that the H6/H8–H1′ regions were mostly 

similar, but with several distinct shifts in resonances. These shifted resonances most likely 

correspond to protons of the m6A22-U10 base pair or of nearby nucleotides. Similar shifts in 

resonances have been observed in studies with model m6A duplexes [23].

FRET shows that the methylated and unmethylated hairpins have different conformations

To further probe the influence of m6A on the conformation of the MALAT1 hairpin in 

solution, we designed two pairs of unmethylated and methylated MALAT1 hairpins 

modified with a 5′ indocarbocyanine-3 (Cy3) fluorophore and an internal fluorescein 

fluorophore in the hairpin stem (Figure 4a–b). The constructs were named based on the 

position of the fluorescein fluorophore: the unmethylated and methylated hairpins Fl-8-A 

and Fl-8-m6A contain fluorescein-dT at nucleotide position 8, while the unmethylated and 

methylated hairpins Fl-26-A and Fl-26-m6A contain fluorescein-dT at nucleotide position 

26.

We observed that m6A modification resulted in a significant increase in FRET efficiency at 

ambient temperature (Figure 4a–c). In contrast, the methylated and unmethylated hairpins 

had similar FRET efficiencies when denatured at 90 °C (Figure 4d). Based on these results, 

we suggest that m6A increases the FRET efficiency by altering the conformation of the 

MALAT1 hairpin, whereas m6A does not alter the conformation of the unfolded oligo. 

Changes in FRET efficiency could be due to changes in the distance between donor and 

acceptor fluorophores or to changes in the relative orientation of the fluorophores. Since the 

fluorescein donor fluorophore was in the stem of the MALAT1 hairpin, increased flexibility 

of the hairpin-stem upon m6A modification could alter the position or orientation of the 

fluorescein fluorophore to increase the efficiency of energy transfer to Cy3 at the 5′ end of 

the hairpin. This interpretation of the observed FRET efficiencies is consistent with the 
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m6A-switch model for the MALAT1 hairpin, in which m6A modification increases the 

flexibility of the hairpin-stem and exposes single-stranded RNA for protein binding.

FRET shows that the conformation of the methylated hairpin is more similar to the 
HNRNPC-bound RNA conformation

The above results demonstrate that m6A modification of the MALAT1 hairpin changes the 

conformation of the RNA alone. To evaluate the influence of m6A modification on the 

conformation of the HNRNPC-bound hairpin, we added HNRNPC protein to the MALAT1 

hairpin constructs and measured the resulting FRET spectra. The FRET efficiencies of the 

methylated and unmethylated MALAT1 hairpins became more similar upon addition of 

HNRNPC (Figure 5a–b), whereas the FRET efficiencies did not change upon addition of 

Proteinase K as a control protein (Figure 5c). Thus, although m6A modification alters the 

conformation of the MALAT1 hairpin alone, in the ribonucleoprotein (RNP) complex the 

RNA has the same conformation regardless of modification status. We suggest that the 

difference in the affinity of HNRNPC for the methylated and unmethylated hairpins is the 

result of a difference in the conformation of the unbound RNA hairpins, whereas the 

ribonucleoproteins have the same conformation and energetics regardless of RNA 

methylation. The 8-fold difference in the Kd for HNRNPC binding can be accounted for by a 

~1.2 kcal/mol destabilization of the hairpin duplex by m6A to expose the U-tract for 

HNRNPC binding, consistent with the previously observed 0.5–1.7 kcal/mol destabilizing 

effect of m6A on model RNA duplexes [23]. The change in the stability of the RNA hairpin 

explains how formation of an RNP with the methylated hairpin is more thermodynamically 

favorable than formation of an RNP with the unmethylated hairpin, even though the 

methylated and unmethylated RNPs are similar in conformation and energy.

For both sets of constructs, the change in FRET efficiency upon protein binding was more 

drastic for the unmethylated hairpin than for the methylated hairpin (Figure 5c), suggesting 

that the conformation of the methylated hairpin is more similar to that of the HNRNPC-

bound hairpin. Since the conformations of the free and bound m6A-modified hairpin are 

similar, the conformational change in the conversion of the free form to the bound form 

might require less energy than the conversion of the unmodified hairpin from the free 

conformation to the bound conformation. In this manner, m6A modification seems to set up 

the hairpin for HNRNPC binding by inducing a conformation more similar to the protein-

bound form.

Structural modeling shows how m6A can alter the conformation of the MALAT1 hairpin

Using the RNA tertiary structure prediction program MC-Sym [30], we generated 9,999 

models for the MALAT1 hairpin and selected models corresponding to the methylated and 

unmethylated hairpins based on four simultaneous criteria: (1) best fit to the FRET data, (2) 

best fit to the 2D NOESY data collected with 100 ms mixing time in 10% D2O, (3) best P-

Scores, and (4) maximization of relative FRET yields. While MC-Sym can use NMR data to 

guide model generation, FRET data involve pairs of models, so they are not amenable to 

interpretation during model generation. Instead of generating models based on the 

experimental data, we first generated a large pool of models, then chose those that satisfy all 
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the data. True conformational sampling would require the use of molecular dynamics 

simulations, but due to very slow RNA dynamics, this approach is not attempted here.

The selected models were narrowed down to 25 models corresponding to the unmethylated 

hairpin and 25 models corresponding to the methylated hairpin. The parameters used to 

calculate the theoretical FRET efficiencies (the orientation parameter κ2 and the distance 

between fluorophores) are plotted in Figure 6a. While the distribution of distances is similar 

for both the “A” and “m6A” sets, the models corresponding to the methylated hairpin 

(“m6A” set) show more variation in the orientation parameter κ2. Since the position of the 

Cy3 fluorophore was kept invariant in all 9,999 models, κ2 depends primarily on the 

position and orientation of the fluorescein fluorophore in the hairpin stem. The observation 

that the “m6A” set shows more variation in κ2 implies that a wider range of different 

fluorescein fluorophore orientations is consistent with the FRET and NMR data, raising the 

possibility that the bases in the stem of the methylated hairpin have greater dynamic 

flexibility or can adopt multiple distinct conformations.

The centroid of the 25 models was used to generate a single model each for methylated and 

unmethylated MALAT1 hairpins (Figure 6b). The superimposed model structures reveal an 

m6A methylation-dependent change in the conformation of the upper stem and loop of the 

MALAT1 hairpin, including the backbone and nucleobases of the U-tract bound by 

HNRNPC. Thus, m6A methylation of the hairpin induces a conformational change that 

propagates through the hairpin structure sufficiently to influence the structure of the 

HNRNPC binding site, which supports the model that the effect of m6A on the hairpin 

structure indirectly causes a change in the HNRNPC binding affinity.

Discussion

In this study, we used biophysical methods and modeling to examine the effect of m6A 

modification on the MALAT1 hairpin. Our NMR and FRET results demonstrate that the 

general structure of the MALAT1 hairpin is maintained, but the nucleobases of the hairpin-

stem are more flexible and solvent accessible upon m6A modification. These results support 

the m6A-switch model, in which m6A regulates protein binding through its influence on 

RNA structure [19].

While previous studies examined the influence of m6A on the structure and stability of 

model RNA duplexes, no past studies used NMR to investigate a physiological m6A-

modified RNA [23,24]. The study of nucleic acids by NMR is already challenging due to 

low proton density and high spectral overlap [32,33]. The terminal loop, internal loop, and 

noncanonical G-U pairs of the MALAT1 hairpin further complicate the detection and 

assignment of imino protons by reducing the number of detectable protons, interrupting the 

continuity of the stem, and introducing ambiguity in the assignment of imino–imino NOEs. 

The possibility of dynamic changes in structure, base pairing, and oligomerization state 

introduces additional difficulties in the study of a naturally occurring RNA hairpin. In the 

future, structural studies of physiological m6A-modified RNA might take advantage of 

selective labeling with 15N or 13C isotopes. Such methods would enable direct observation 
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of hydrogen bonding, unambiguous identification of noncanonical base–base interactions, 

and better resolution of local changes in conformation [32,33].

The FRET constructs used in this study showed that m6A modification influences the 

observed FRET efficiency, likely due to an m6A-induced change in the conformation of the 

MALAT1 hairpin. However, ensemble FRET studies cannot distinguish a homogeneous 

population adopting a single conformation from a heterogeneous population with multiple 

subpopulations or with dynamically changing conformations [34]. It is very possible that the 

m6A-modified hairpins not only have a different average structure, but are also more 

dynamic or adopt a more heterogeneous set of different conformations. It would be very 

interesting to study our constructs using single-molecule FRET in order to better understand 

how m6A influences the conformational dynamics of the MALAT1 hairpin. Single-molecule 

FRET studies are well-suited to studying dynamic systems and have provided insight into 

processes such as RNA folding and RNP formation [35]. In addition to clarifying the 

structure and dynamics of the MALAT1 hairpin, single-molecule FRET could further 

elucidate how m6A affects hairpin folding and protein binding.

The MALAT1 hairpin is the first identified example of an m6A-switch, but the changes 

induced by m6A modification of the MALAT1 hairpin are likely generalizable to a much 

larger family of m6A-regulated RNA structures. Over 2,000 high-confidence m6A-switches 

have been identified at HNRNPC binding sites [19]. In addition, the m6A-switch mechanism 

has the potential to regulate the binding of other RNA binding proteins through altered 

accessibility of their single-stranded RNA binding motifs or through changes in their 

cognate RNA structures. Thus far, the only m6A reader proteins known to directly bind m6A 

belong to the YTH family of proteins [18]. While other direct m6A binders might yet be 

discovered, the m6A-switch mechanism expands the pool of candidate m6A readers to a 

much wider array of RNA binding proteins. Indirect m6A readers might be pervasive but 

difficult to discover because in many cases only a subset of their targets might be regulated 

by m6A modification. For example, m6A-switches seem to regulate ~8% or ~40,000 of all 

known HNRNPC binding sites [19]. Moving forward, it will be important to investigate 

other indirect m6A readers and the mechanisms by which m6A alters RNA structure to 

influence protein binding.

As the most abundant post-transcriptional modification in eukaryotic mRNA and lncRNA, 

m6A could have pervasive regulatory roles in the regulation of mRNA transcription, 

splicing, and translation, and in influencing the structure and function of lncRNAs. In 

addition, m6A modification might influence RNA structures in other classes of noncoding 

RNA. For example, m6A methylation of primary microRNAs (pri-miRNAs) has recently 

been shown to be crucial for recognition by the microprocessor complex, though it is unclear 

in this case whether m6A functions by influencing RNA structure or through direct 

recognition [36]. While m6A modification likely regulates many m6A-switches using the 

same mechanism as in the MALAT1 hairpin, m6A could potentially use other mechanisms 

to regulate RNA structures such as disrupting a tertiary hydrogen bond [7]. Even in an RNA 

stem-loop, the influence of m6A on RNA structure is dependent on context, as m6A can 

either stabilize or destabilize depending on its position. It will be important to investigate the 

diverse and context-dependent effects of m6A on RNA structure and dynamics, and how 
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these are linked to the functions of m6A in the cell. As the first example of an m6A-induced 

structural change in a cellular RNA, the MALAT1 m6A-switch is an initial model for a 

potentially much more general mechanism by which m6A achieves its functions in the cell.

Materials and Methods

RNA synthesis and purification

RNA oligos containing two fluorophore modifications in each sequence were synthesized by 

Expedite DNA synthesizer on a 1 µmol scale. Cy3 phosphoramidite and fluorescein-dT 

phosphoramidite were purchased from Glen Research. m6A phosphoramidite was prepared 

by following our reported procedure [37]. All the other phosphoramidites and beads were 

purchased from Chemgene. After oligo synthesis, the RNA oligos were first deprotected by 

treatment with 30% ammonium hydroxide and ethanol (3:1, v/v) at 55 °C for 4 h. Once 

cooled to ambient temperature, the supernatant was dried in a SpeedVac and the resulting 

pellets were further deprotected by treatment with a mixture of dimethyl sulfoxide (100 µL) 

and hydrogen fluoride triethylamine (125 µL) at 65 °C for 2.5 h. After cooling to ambient 

temperature, 22.5 µL sodium acetate (3 M) and n-butanol (1 mL) were added, and the 

mixture was vortexed and precipitated at −80 °C for 1 h. After centrifugation, the 

supernatant was removed, and the pellets were washed with 70% ethanol and purified on an 

8% acrylamide:bisacrylamide (29:1), 7 M urea, 89 mM Tris Borate pH 8.3, 2 mM 

Na2EDTA gel. RNA was excised from the gel by UV shadowing and eluted in 50 mM 

potassium acetate, 200 mM KCl, pH 7.5 by the crush-and-soak method. Eluted RNA was 

precipitated in ethanol, then resuspended and stored in H2O at −20 °C.

RNA oligos M2577-A and M2577-m6A were synthesized, deprotected, and purified in a 

similar way except that we used a Mermade synthesizer on a 5 µmol scale.

HNRNPC protein expression and purification

Rosetta BL21 Escherichia coli were transformed with a pGEX-6P-1 plasmid containing the 

full-length HNRNPC1 coding sequence inserted between the BamHI and XhoI restriction 

sites. The transformed bacteria were grown to saturation at 37 °C, 200 rpm in Luria–Bertani 

Lennox media with 100 µg/mL ampicillin and 50 µg/mL chloramphenicol, then diluted 

1:100, grown in the same culture media to an absorbance of ~0.6 at 600 nm, and induced 

with 2.5 mM isopropyl β-D-1-thiogalactoside (IPTG). The bacteria were grown an 

additional 5 hours at 37 °C, 200 rpm, then harvested and sonicated at 4 °C. GST–HNRNPC1 

fusion protein was isolated from the soluble lysate using GST•Bind resin (Novagen), and 

then cleaved by GST-tagged PreScission Protease for 16 hours at 4 °C. The purified full-

length HNRNPC1 protein was stored in 10 mM Tris pH 7.5, 100 mM KCl, 2.5 mM MgCl2, 

30% glycerol (v/v) at −80 °C.

NMR spectroscopy

NMR data were acquired on a Bruker AVANCE III 600 MHz (14 Tesla) NMR spectrometer 

with a 5 mm pulsed field gradient (z-axis) triple HCN probe, and were processed using 

TopSpin v3.2 software. All NMR experiments were conducted at 20 °C, with trimethylsilyl 

propanoic acid (TSP) as the 1H chemical shift reference. Gel-purified RNA in H2O was 
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centrifuged 10 minutes at 17K·g to sediment any particulate matter. The supernatant RNA 

was combined with Na2HPO4 buffer at pH 7.4 and incubated 1 minute at 90 °C, then 3 

minutes at ambient temperature. MgCl2, D2O, and TSP were added to a final volume of 500 

µL with 10 mM Na2HPO4 pH 7.4, 2.5 mM MgCl2, 90% H2O / 10% D2O (v/v). The samples 

were then incubated 5 minutes at ambient temperature and stored at 4 °C until data 

collection. 1D 1H NMR spectra of the RNA hairpins were collected at 1.12 mM 

concentration, with 1028 scans. 2D 1H NOESY spectra in 90% H2O / 10% D2O (v/v) were 

acquired with 100 ms mixing time, with 256 scans. 2048 points were taken in F2 and 512 

points in F1, with a recycle delay of 1 second and a spectral width of 22 ppm in both 

dimensions. The RNA concentration was 1.12 mM for the 2D NOESY scans at 20 °C, and 

0.47 mM for the 2D NOESY scans at 4 °C. 2D 1H NOESY spectra of 0.78 mM RNA in 

100% D2O were acquired with 100 ms mixing time, with 256 scans. 2048 points were taken 

in F2 and 512 points in F1, with a recycle delay of 1 second and a spectral width of 9 ppm in 

both dimensions.

FRET experiments

FRET spectra were acquired on a HORIBA FluoroLog-3 Spectrofluorometer equipped with 

a Peltier controller, and processed using FluorEssence v3.5 software. 1 µM gel-purified 

RNA in H2O was combined with Tris pH 7.5 buffer and incubated 2 minutes at 90 °C, then 

3 minutes at ambient temperature. KCl and MgCl2 were added to a final volume of 100 µL 

with conditions 500 nM RNA, 10 mM Tris pH 7.5, 100 mM KCl, 2.5 mM MgCl2. For 

experiments with protein binding, HNRNPC was added with the same final buffer 

conditions. For experiments with denatured RNA, the sample was incubated at least 5 

minutes at 90 °C, and the spectra were measured with the Peltier controller set at 90 °C. The 

samples were transferred to the cuvette and emission spectra were collected from 500 nm to 

750 nm using the excitation wavelength 490 nm, with excitation and emission spectral slit 

widths of 2 nm and 5 nm, respectively. A buffer solution of 10 mM Tris pH 7.5, 100 mM 

KCl, 2.5 mM MgCl2 was used as the emission spectrum blank. FRET efficiencies were 

calculated as EFRET,relative = IA/(ID+IA), where ID is the emission intensity at 518 nm and IA 

is the emission intensity at 563 nm.

Structural modeling

The 33-nucleotide sequence 5′-UAACUUAAUGUUUUUGCAUUGGACUUUGAGUUA 

with secondary structure “((((((((.((((…….)))).))))))))”, where parentheses denote base pairs 

and dots denote non-base-paired residues, was used to generate 910 decoy RNA tertiary 

structures. The decoys varied from one another only in the U0–A32 base pair, where the 5′-

most nucleobase U0 was added as a placeholder for the Cy3 fluorophore present in the 

FRET oligos. Each of the 910 decoys was used to generate 9,999 RNA tertiary structure 

models for the MALAT1 hairpin using the MC-Sym computer program. Within each decoy 

set, the U0–A32 and A1–U31 base pairs were invariant. The decoy set that generated the 

most pairs that fit the FRET data for either Fl-8-A/m6A or Fl-26-A/m6A was used to select 

models for the methylated and unmethylated hairpins. Rather than assigning weights to the 

various experimental parameters, we used the experimental data as filters in a sequential 

fashion, and the final selected models do not depend on the order of application of the 

filters.
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Models were selected from the 9,999 structural models in the decoy set based on four 

simultaneous criteria: (1) best fit to the FRET data, (2) best fit to the 2D NOESY data, (3) 

best P-Scores, and (4) maximization of relative FRET yields.

(1) Best fit to the FRET data—The theoretical FRET efficiencies were calculated as

with

and

where D and A are the unit vectors oriented from N1 to C4 of the uridine nucleotides 

corresponding to the donor and acceptor fluorophores, respectively, R is the unit vector 

oriented from the donor position H3 to the acceptor position H3, and R is the distance from 

the donor H3 to the acceptor H3. Only pairs of structures for which the theoretical 

EFRET(A) / EFRET(m6A) ratios were within 0.01 of the experimental ratios for Fl-8-A/m6A 

and Fl-26-A/m6A were kept (122,844 A–m6A pairs).

(2) Best fit to the 2D NOESY data—To extract inter-proton distance information from 

the 2D NOESY data at 20 °C in 10% D2O with 100 ms mixing time, we assumed a linear 

relationship between peak intensity and mixing time:

where η is the NOE peak intensity, Wo is the rate of the zero-quantum transition, and tmix is 

the mixing time (100 ms). Using this approximation, the inter-proton distance r is related to 

the peak intensity by

so the experimental NOE intensities and the relative distances between imino protons in the 

modeled tertiary structures were used to calculate log(rx
6 / ro

6) ratios, where rx is the inter-

proton distance for a pair of imino protons, and ro is the distance between G27 H1 and U5 

H3. The least squares differences between the five experimental and modeled log(rx
6 / ro

6) 

ratios were then used to classify the modeled structures as either “A” or “m6A” depending 

on whether they were a closer fit to the unmethylated or methylated hairpin, respectively. 

Using this method, 8,176 structures were assigned as “A,” while 1,823 were assigned as 
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“m6A.” Only pairs of structures for which the “A” and “m6A” assignments were consistent 

with the assignments based on the FRET efficiencies were kept.

(3) The P-Score—for each modeled RNA tertiary structure was calculated based on the 

phosphate chain torsion angles in the predicted tertiary structures as described previously 

[31]. P-scores involve as many as four consecutive phosphate groups, and their aim is to 

assess how natural the modeled RNA looks like given the backbone trace. Only the top 

5,000 of the 9,999 tertiary structures in the decoy set were kept.

(4) Maximization of relative FRET yields—Once the original 9,999 structures in the 

decoy set were filtered based on their FRET fit, NOE fit, and P-Scores, there were 276 

remaining structures corresponding to the unmethylated hairpin, and 713 structures 

corresponding to the methylated hairpin. These were narrowed down to 25 models each 

corresponding to the unmethylated and methylated hairpins by maximizing the density of 

A–m6A pairs. To achieve density maximization, a structural model that has been selected to 

be a representative of the “A” state (Figure 6a, gray dots) must maximize the number of 

structural models in the “m6A” state (Figure 6a, dark red dots) for which the relative FRET 

efficiency yielded is close to the one experimentally observed (gray lines connecting the 

dots). The same principle was applied while populating the “m6A” state; models must 

maximize the number of “A” state relative FRET yields.
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Highlights

• M6A alters the conformation of the HNRNPC binding site in a MALAT1 

hairpin.

• M6A modification biases the MALAT1 hairpin toward its protein-bound 

conformation.

• M6A can influence many cellular functions by influencing protein binding.
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Fig. 1. The m6A-switch model
The human lncRNA MALAT1 is reversibly methylated at position A2577. The protein 

HNRNPC binds to the U5-tract in this hairpin from MALAT1, with an ~8-fold higher 

affinity for the methylated hairpin. One of the U’s in the HN NPC binding site pairs with the 

methylation site A2577. The presence of m6A weakens the base pair and increases the 

accessibility of the U-tract for protein binding.
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Fig. 2. 1D NMR spectra show that the overall structure of the hairpin is maintained
(a) Secondary structure of the 32-nt M2577-A oligo from nucleotides 2556–2587 of 

MALAT1. The m6A modification site (A22 in the oligo, or A2577 in MALAT1) is denoted 

with a red “X.” The figure was made using Visualization Applet for RNA (VARNA) [38]. 

(b) 15% native PAGE of the unmethylated (M2577-A) and methylated (M2577-m6A) 

hairpins in 25 mM Tris acetate pH 7.4, 2.5 mM magnesium acetate. (c) Superimposed imino 

regions of the 1D 1H NMR spectra of M2577-A (blue) and M2577-m6A (red). Watergate 

solvent suppression 1D 1H NMR spectra were measured under the conditions 1.12 mM 

RNA,10 mM Na2HPO4 pH 7.4, 2.5 mM MgCl2, 90% H2O / 10% D2O (v/v), 20 °C.
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Fig. 3. 2D NOESY spectra show that the upper stem is more dynamic in the methylated than in 
the unmethylated M2577 hairpin
(a) Superimposed imino regions of the 2D 1H NOESY NMR spectra of M2577-A (blue) and 

M2577-m6A (red) in 10% D2O. The spectra of 0.47 mM RNA were measured at 4 °C with a 

100 ms mixing time. (b) Superimposed imino regions of the 2D 1H NOESY NMR spectra of 

M2577-A and M2577-m6A in 10% D2O. The spectra of 1.12 mM RNA were measured at 

20 °C with a 100 ms mixing time. (c) Separate and superimposed amino–imino regions of 

the 2D 1H NOESY NMR spectra of M2577-A and M2577-m6A in 10% D2O at 20 °C. (d) 

Superimposed H6/H8–H1′ regions of the 2D 1H NOESY NMR spectra of M2577-A and 

M2577-m6A in 100% D2O. The spectra of 0.78 mM RNA were measured at 20 °C with a 

100 ms mixing time.
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Fig. 4. FRET shows that the methylated and unmethylated MALAT1 hairpins have different 
conformations
(a) Fluorescence emission spectra of the FRET constructs Fl-8-A and Fl-8-m6A upon 

excitation at 490 nm. Cy3 (green) is conjugated to the 5′ phosphate, and fluorescein-dT (Fl) 

is incorporated at the indicated position (blue) in each oligo. Spectra were measured under 

the conditions 500 nM RNA, 10 mM Tris pH 7.5, 100 mM KCl, 2.5 mM MgCl2 at ambient 

temperature. Each spectrum is the average of 2–3 measurements. (b) Fluorescence emission 

spectra of Fl-26-A and Fl-26-m6A upon excitation at 490 nm. (c) Relative FRET efficiencies 

(EFRET,rel) of M2577-A and M2577-m6A, calculated as I563/(I563+I518), where Ix is the 

fluorescence emission intensity at x nm. FRET efficiencies are the mean of 6–8 

measurements. Error bars represent ± one standard deviation. (d) Difference in the relative 

FRET efficiencies of M2577-A and M2577-m6A at ambient temperature (~20 °C) or at 90 

°C.
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Fig. 5. FRET of RNPs containing the M2577-A and M2577-m6A hairpins
The RNPs show similar FRET, suggesting that the conformation of the RNA in the RNP is 

the same regardless of the presence of m6A. In addition, the methylated hairpins exhibit a 

smaller change in FRET upon HNRNPC binding. (a) Fluorescence emission spectra of 500 

nM Fl-8-A and Fl-8-m6A with or without addition of HNRNPC at a concentration of 3–

4.5·Kd (Kd = 722 nM for M2577-A, Kd = 93 nM for M2577-m6A) [19]. Spectra were 

measured under the conditions 500 nM RNA, 10 mM Tris pH 7.5, 100 mM KCl, 2.5 mM 

MgCl2 at ambient temperature at excitation wavelength 490 nm. (b) Fluorescence emission 

spectra of 500 nM Fl-26-A and Fl-26-m6A with or without addition of HNRNPC at a 

concentration of 3–4.5·Kd. (c) Change in the relative FRET efficiency (ΔEFRET,rel) of each 

hairpin (500 nM) upon addition of: 3–4.5·Kd HNRNPC (2.17 µM HNRNPC for M2577-A; 

410 nM HNRNPC for M2577-m6A), HNRNPC such that [RNP]/[RNA]total = 80% (3.29 µM 

HNRNPC for M2577-A; 770 nM HNRNPC for M2577-m6A), or 106 ng/µL Proteinase K 

(equivalent to weight/volume concentration of 3.25 µM HNRNPC).
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Fig. 6. Structural models for M2577-A and M2577-m6A based on FRET and NMR data
(a) Plot of 25 selected structures for M2577-A (gray) and M2577-m6A (dark red), in terms 

of κ2 and distance between fluorophores for Fl-8-A/m6A and Fl-26A/m6A. The structures 

were selected from an initial set of 9,999 tertiary structures for the M2577 hairpin [30] (c) 

Structural models of M2577-A (gray) and M2577-m6A (dark red), computed as the centroid 

of the 25 selected structures. The m6A modification site and the U5-tract are highlighted in 

shades of blue for the unmethylated MALAT1 hairpin, and in magenta for the methylated 

hairpin.
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Table 1

Imino–imino NOE intensity in 10% D2O at 20 °C.

Imino–imino pair NOE intensity for
M2577-A

NOE intensity for
M2577-m6A

G27H1–U5H3 1.00 ± 0.00 1.00 ± 0.00

U5H3–U26H3 0.20 ± 0.02 0.17 ± 0.03

U25H3–U26H3 0.16 ± 0.03 0.18 ± 0.01

G27H1–U26H3 0.06 ± 0.01 0.06 ± 0.00

G21H1–U11H3 0.05 ± 0.02 0.00 ± 0.01

G9H1–U10H3 0.04 ± 0.01 0.01 ± 0.00
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